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BOTTOM SEDIMENT EFFECTS IN A
NUMER.ICAL PARABOLIC EQUATION
ENSEMBLE AVERAGE PROPAGATION

Hoger M. Oba

Naval Rescarch Laboratory,
Bay Saint Louis, MS 39529-5004 USA

ABSTRACT

A method of numerically computing average pressure for an ensemble has been
developed using a normal mode analysis of the parabolic equation {1]. It has
been used to compute the transmission loss and phase for the average solutions
in the continuous wave case where the vertical variation is smoathly varying. In
this paper an alternative choice of basis functions allows one to consider sound
velocity profiles with discontinuities while preserving numerical cc nvergence.
These discontinuities arise when the sound velotity profile makes a rapid jump
between layers of differing speeds. Such a difference occurs between the water
column and higher velocity fluid bottoms which model sediment layers. Calcu-
lations tising energy loss due to sediment penetration allow better estimates of
aftexiugtion.

INTRODUCTION

The dxscussnon below modifies a numerical normal method for the propa-
gation of the average of the full complex field in {1). The method propagat.es
the complex pressure field in terms of a vertical transform (similar to a discrete
sine transform) corresponding to eigenfunctions of a piecewise constant' sound
velocity profile. First, the transform is used to re-express equations in the co-,
efficient space of a reference eigenfunction series. Because this change fom the
piecewise corstant function to the referepce function involves cbutinuous differen-
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tiable functions, the convergence of series will be at least O(1/n?). Environmen-
tal fluctuation of sound speed changes the e{genfunctions, and these changes can
be expressed as orthogonal matrices. Numerical matrix routines [3] quantify the
changes and permit their evaluation, as well as eigenvalue changes. Finally, the
numerical algorithm computes average solutions, taking into account the varia-
tion due to environmental fluctuation.

The generalized parabolic equation corresponds to the rightward propagat-
ing solutions of the Helmholtz equation (2]:

(ia,'+ W)U=O. (

The index of refraction a‘g-; =n = 1, and the sound speed term has jump discon-
tinuities between layers of differing speed:

g =q(2) = §(2) + ge=0(2) + q.(2) = K*(n?(2) - 1), (2)

. where §(z) is piecewise constant, g.-0 and g, are continuous and differentiable.
. For simplicity, the parameter 0 < € < 1. The function ¢ is depth dependent and
range constant. The vertical and horizontal equations are, respectively

(82 + q% An)n =0 (3)
(ia, + k2 Z ,\n) ¥n = 0. (4)

" REFERENCE VERTICAL NORMAL MODES

" This section introduces a vertical sine-like transform of (3) based on §. Here we
consider pressure release top and bottom surfaces. Collins has already used sim-
ilar boundary conditions with success in FEPE [4]. A single fluid basement of
higher velocity models sediment, although several layers may be used. (The analk
ysis for a semi-inﬁhite fluid bottom is nearly identical for the eigenvalues, but
in the continuous spectrum, it involves integro-differential equations with Hilbert
transforms. )

Siuce we cousider only two layers the § profile is

~_ Jg,0<2<b
a= {ql,b<z<h )

with § = ¢o - q1 > 0 since the sediment sound speeds are higher. There are
case (a) modes confined to the top fluid and (b) modes which have significant
- Y4 -




sediment penetration.
(a) Top confined eigenvalues have

~qo < pn < —q1.

'

Use p,, = k3 — qo = —q; — v3 to define k., the upper layer form of the eigenvalue,
and vy, the lower layer form. Set Z = h — 2, The eigenfunction and its derivative

are
b = 80SinKnz, 2< 6 3 :;S _ | sokncosKnz, 2< b
n sysinhvp2, 2<b 7" —8jvncoshvnz, 2<b

Continuity dictates matching at layer interface z = b, 5 = b. Their ratio is

tanab = _ ‘i“"—‘inﬁ Note that as v | 0, th—”ﬂ-"Tb sol<n<ﬁ+2,unloss

tandy/q < -b\/a in which case n < ﬁ Determine the eigenvalues numerically
by solving

Kn =} (n‘rr-—Tan 1—ﬂttanhu,, )

Normalize (where constant density has been used) 1 = lqu,.Il, = fo 2(z)dz to
find

N 2. 1 T .2 - "‘/2
o = bsinh® vab — bsin® kb §sin2x,b
0 2sinh? v, b’ 4K,v2 '
(b) For sediment penctrating eigenvalues § + p > 0 everywhere. Thus, the top
and bottom forms of the eigenvalues are defined by u, = K2 — g = V2 — q1.

As before, the eigenfunction and derivative match at layer interface to give ratio
Sn = ‘-315'* Set b= b —b. To find eigenvalues numerically, solve

¢ b3 — 1!
u,,=ﬁ—?q[1+\/1+(hbq)/c2] L

where ¢ = nr + (—1)"Sin™? ['—‘-“—”ﬁiIL sin kb cos unl;] This requires n > 9—}& and

2sin? v, b

the ¢n and p, depend upon frequency through the k% term in §.
Consider the € independent case of ¢ = §(z) + go(z) in cquation (3) . It has
eigenfunctions ¥, (2) and eigenvalucs \,. Expand these vertical eigenfunctions in

n? > —Q-';"?é. Normalization implies sg = [ + BoinZenb | %"—] . Finally,

the g eigenfunction series ¥n = Y, @m Rmn. This allows the expression of the
differential equation in the serics

0= Zm=1 d’mRmn["[lm + (A” KR l]:,)“, |
- 303 - |
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Define the inner product of velocity and ¢ eigenfunctions

- (@oturtm) = [ (e Nom(z) bz

Reformulation of the original equation (1) requires definitions of the several vec-
tors and matrices: Rk = (¥x, ém ) is the matrix containing the § eigenfunction
transform of v, eigenfunétlons, the sound velocity profile information Is incorpo-
rated into the matrix qo with component qo mn = (godm, #n). These now satisfy
the eigenvalue equation

A=HT(M—qo)R, A =disg(s, A, ...), )

where M = dia.g(p,. Ba, ...) is-the diagonal matrix of § eigenvalues.

VERTICAL MODES IN THE ENSEMBLE .
Next take an ensemble velocity profile expressed in terms of the single pa-

~rameter € in q=§¢+ g+ q. The c-dependent eigenfunctions ¥, . of (3) may be

written in ¢, series:

. Yen = Zj::‘ ¢mP¢mrn' (7)

where Pynn = (¥m, ¥en). Computation of the matrix diagonalization gives |

" PT(-A+RTqR)P = -A,. ~ (8)

A single element of the ensemble (¢ f_ixed)' is a solution to

(ia..+\/33+é+qo+q¢)u.=0. o (9)

Express the solution u, of (9) in an eigenfunction series of the 9, ,, corresponding
to §+ ¢o + g, .in (3) :
(= o]
U = Z"‘:l YemWem.

The coefficient vectors for the eigenfunction series are related by RP,w, = u,.
Eq. (9) means vectors corresponding to the ¢ parameterized eigenfunctions sat-
isfy the vector differential equation

rwe =iy — Aewe, (10)

where VEZ - A, is the diagonal matrix of horizontal eigenvalues.
- 304 -




AVERAGE SOLUTION TO THE PARABOLIC EQUATION
Lincar algcbra shows that P, = eA©) where A(e) is anti-hermitian (5. Under
suitable conditions, A(¢) = €A. In this case

P, =¢® = Uexp(ei®)U*, » (1)

where exp(e i0) = diag(e®*®', ¢¢*%, ...) and U is a constant unitary matrix 6.

Eq. (10) has a solution vector
we = exp(ivVk? — Aefr — ro])w(ro).

This is orthogonally transformed back to the § eigenfunctions transformed coef-
ficients u,. Thesc are averaged with respect to € to give the ensemble averaged

with respect to ¢

{ue) = R<P, exp(evVk2 — A fr - r(,])P,T> RTu(ry).

The parabolic equation (1) has an ensemble averaged solution expressed in te::

of the § cigenfunction cocfficient vectors
(ue) = (RU) () (RU) u(ru), (12

where

_ €101 ivhk?-A [r-r, -6
I'=¢"""U"¢ Uc

‘The average coupling matrix (I) has components

N _
(an) = ZJ_—_L UijJN (7)mn_]

o0
Vhuny = / exXp (c {Om — 0.] + i\ /h2 - A, Ir - ml) dp(e),

~

with

where dp(e) = ‘;?Edc is the probability density.
ATTENUATION ESTIMATES

In general, if the depth dependent attenuation cocticient is J(z), then the
modal attenuation e=%nlr-rol i given by

h
Hz) ..
n = —=, (2)dz :
¢ /U K, it Je (1)

~ 3C5 -




where K, = yAZ = A, [7]. For comparison, ¢ in [7]is related to 8(z) above by
inclusion of a factor of £ in 8. Computationally, onc may rewrite (13) using (7)

and R to find . 1
Ken

where B = foh B(z)¢;(2)¢;5(2)d=. If, for example, J is constant in the sediment

ben = Zkij'k: Rij knRJ’k’Pek'nBj]'

and vanishes in the water column., and & # &’ arc in the non-penetrating spec-
sinh(v, +v;/)2 sinh(v) - /)2

U]+UJI UI-U)/

trum, then By = 35,85 ( ) Finally, if we wish to find

the ensemble averaged attenuation 6.,
(6¢n) = Zk]j'k' Rjknk k'nRJ’k’BJ]’
where g = Zj]' Ukjgt,jUk:jl(],.j: f 7{-—{—.‘-e”(81+61’)(1p(f).
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